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Effect of fluid wall shear stress on non-linear beam vibration
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Abstract

In this paper, the effects of tension and fluid wall shear stress on non-linear structural vibrations are
investigated. Results show that fluid wall shear stress both suppresses and increases the non-linear response
given by the large deflection response depending on its value. An in-depth analysis of the non-linear
vibration response shows vibration energy flowing from the fundamental to the harmonics and then
subharmonics as the excitation level increases. Various techniques to suppress non-linear vibrations were
examined and most gave the same result, which is suppression of the subhramonics and harmonics.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known in structural dynamics that at high excitation levels, linear theory cannot be
used to accurately predict structural response. For instance, linear plate theory used in sonic
fatigue life predictions for aircraft structures subjected to high sound pressure levels, has led to
poor results when compared to experimental data [1,2]. In order to overcome the weakness of
linear theory, several non-linear models have been proposed. Mei and Prasad [3] used a non-linear
damping model in an attempt to explain some experimental phenomena observed for aircraft
panels excited by a high intensity sound. They found that non-linear damping contributed
significantly to the broadening of the response peaks at high excitation levels. In another
experimental and numerical study, Maestrello et al. [4] showed that when a flat panel was excited
by plane acoustic waves having a frequency that corresponds to one of the panel’s natural
frequencies, its response became non-linear as the amplitude of the excitation was increased. Only
few authors have studied the effect of the surrounding fluid on the response of a flexible structure.
Frendi et al. [5] showed the existence of a strong coupling between plate vibration and the
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surrounding flowfield at high excitation levels. However, in most structural vibration studies, fluid
wall shear stress has been neglected. In this paper a non-linear model is used to investigate the
effect of fluid wall shear stress on the non-linear structural vibrations of a beam and to test
various techniques to suppress non-linear vibrations. For instance, it is well known that damping
tape reduces the vibration levels of a structure. Maestrello et al. [6] observed experimentally that
the non-linear plate response to a high acoustic excitation becomes linear when a damping tape or
a shaker-type control is applied at the same frequency as that of the excitation but with an
opposite phase. Keith and Bennett [7] made wall shear stress measurements in a fully developed
turbulent boundary layer at Reynolds numbers of 8200 and 13 400 using a hot-film wall shear
stress transducer. Chase [8] derived a semi-empirical model for the wavevector-frequency
spectrum of turbulent wall shear stress. He found that the resulting computed spectral density at
low wavenumbers was comparable to the experimental low-wavenumber turbulent wall pressure.

2. Formulation of the model

The physical problem addressed in this paper is that of non-linear beam vibrations. The
governing differential equation describing the motion of the flexible beam shown in Fig. 1 is
derived using Cauchy’s first law of motion in undeformed Cartesian co-ordinates:
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where Z is the transverse beam deflection, tw is the fluid wall shear stress, rph is the mass per unit
area of the beam, h the beam thickness and G its physical damping. D is the stiffness defined as
D ¼ Eh3=12ð1� n2Þ; with E being the modulus of elasticity in tension and n the Poisson’s ratio of
the beam material. The coefficient %Nx is given by
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which characterizes the tension created by stretching of the beam due to bending, x0 is the beam
origin and L its length (see Fig. 1). The forcing term of Eq. (1), DpðtÞ; is written as

DpðtÞ ¼ e sinðotÞ; ð3Þ

ARTICLE IN PRESS

∆p

τ w

   Rigid Flexible beam η   Rigid 

y

x x0      x0+L

Fig. 1. Physical boundaries of the model.
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with o and e being the forcing frequency and the excitation amplitude, respectively. Eqs. (1)–(3)
are written in non-dimensional form with Pref ; 1=f and h as the reference quantities. The reference
pressure is that of the air at sea-level conditions, which is Pref ¼ 101 326 Pa, the beam thickness,
which is the reference length, is h ¼ 0:508mm and the reference time is the inverse of the
excitation frequency f ¼ 631Hz corresponding to the fifth mode of the beam. The non-
dimensional results, designated by the star notation, are presented in this paper.

3. Methods of solution

The dynamic equations of motion (1)–(3) are solved using an implicit finite difference method
for structural dynamics developed by Hoff and Pahl [9] known as the y1-method. Extension of the
algorithm to Eq. (1) was developed by Buhler [10]. Numerical integration of %N�

x is achieved
through a series of iterations within each time step using the Cubic Splines method [10]. The
boundary conditions used to solve the non-linear beam equation are those of a clamped beam:

ZðxÞ ¼ Z;xðxÞ ¼ 0; at x ¼ x0 and x ¼ x0 þ L: ð4Þ

4. Results and discussion

The numerical experiments simulate the forced vibration of a beam. The beam properties are:
thickness h ¼ 0:508mm, length L ¼ 254mm, stiffness D ¼ 2Nm, mass per unit area
rph ¼ 2:714 kg/m2, Poisson’s ration n ¼ 0:3 and physical damping G ¼ 1:520� 102 N s/m3. The
first six natural frequencies of the beam are 47, 131, 256, 423, 631 and 824Hz. An excitation
frequency of 631Hz is used in order to excite one resonant mode of the beam. The results will
be divided into two groups; one in which only the effects of %N�

x on the response is studied and the
other in which the combined effect of t�w and %N�

x is studied. In the last section, results from the
control of non-linear vibrations using different methods will be discussed.

4.1. Effects of %N�
x on the beam response

In this subsection, t�w is set equal to zero. In order to study the effect of %N�
x; the excitation

amplitude is increased by small increments and a sequence of solutions is obtained.
For small amplitude forcing, e� ¼ 0:027; the beam response is linear as shown in Fig. 2. The

time history, Fig. 2(a), the PSD, Fig. 2(b), the phase diagram, Fig. 2(c) and the Poincar!e map,
Fig. 2(d), indicate that the response is indeed linear and harmonic. Increasing e� to 0.136 results in
increased non-linear response, as shown in Fig. 3. An additional frequency can be observed in the
displacement time history, Fig. 3(a), and the PSD, Fig. 3(b). The phase diagram, Fig. 3(c), shows
the presence of two small loops on top of the main loop. This is confirmed by the Poincar!e map,
Fig. 3(d), which shows three attractors. The new frequency spike shown on the PSD corresponds
to the 3f harmonic. There is no spike at the second harmonic, 2f : We believe this is due to the
absence of a symmetric mode in the vicinity of 2f ; while there is a symmetric mode near 3f [11].
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Increasing the value of the excitation amplitude to e� ¼ 0:197 leads to a more complex
dynamical behavior. There is no easily detectable periodicity in the time history, Fig. 4(a),
however the phase diagram, Fig. 4(c), shows a relatively repetitive behavior despite its apparent
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Fig. 2. Linear response of the beam center for e� ¼ 0:027: (a) time history, (b) power spectral density (PSD), (c) phase
diagram and (d) Poincar!e map.
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Fig. 4. Non-linear response of the beam center for e� ¼ 0:197: (a) time history, (b) PSD, (c) phase diagram and

(d) Poincar!e map.
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complex shape. This is confirmed by the corresponding Poincar!e map, Fig. 4(d), which shows the
presence of many attractors distributed along a circular path. Therefore the beam response is
quasi-periodic. The PSD, Fig. 4(b), shows the presence of two new spectral peaks in addition to
the fundamental. One is a subharmonic very close to the f =3 frequency and the other is a
harmonic of the subharmonic corresponding to 5f =3: The contribution to this harmonic is
however very weak contrary to the subharmonic.
When e� is increased further to 0.201, Fig. 5, the f =3 subharmonic becomes larger in amplitude

than the fundamental, Fig. 5(b). The fundamental, in this case, can be thought of as the harmonic
of f =3: The amplitude of the transverse displacement at the center of the beam, Fig. 5(a), is also
larger than in the previous cases. The phase diagram, Fig. 5(c), shows three loops, which is
consistent with the presence of a strong f =3 subharmonic and the three attractors of the Poincar!e
map, Fig. 5(d).
In an attempt to understand the vibration energy transfer phenomena between the various

frequencies, the distribution of the beam vibration energy as a function of frequency and
excitation amplitude is shown in Fig. 6. The total energy contained in the PSD for each e� has
been scaled to 1, with 1 being the amplitude of the energy contained in the response to an
excitation with e� ¼ 0:204: The figure shows that as e� increases, energy is transferred from the
fundamental to the harmonics and then the subharmonics.

4.2. Effect of the wall shear stress

The influence of the wall shear stress on the solution is now studied. The wall shear stress is
normally obtained from the flow solution [12], however for simplicity, in this study, the shear
stress will be taken as a constant. Two values of e� are considered, e� ¼ 0:027 and 0.197. These two
excitation amplitudes resulted in a linear and a non-linear beam response, respectively, when the
wall shear stress was neglected.
For e� ¼ 0:027; a sequence of solutions is obtained for increasing values of wall shear stress. For

relatively small values of wall shear stress (t�wp1:361) the beam response remains linear. The case
for t�w ¼ 1:361 is illustrated in Fig. 7. The time history, Fig. 7(a), and the PSD, Fig. 7(b), indicate
that the response is indeed linear. These results are expected since the value of the wall shear stress
is small.
Increasing t�w to 1.429 results in a complex dynamical response represented by an additional

frequency in the PSD, Fig. 8(b). This additional frequency is close to the f =4 subharmonic. It is
difficult to identify the periodicity in the time history, Fig. 8(a). However the phase diagram,
Fig. 8(c), and the Poincar!e map, Fig. 8(d), show that the response is quasi-periodic.
Fig. 9 illustrates the beam response for t�w ¼ 2:041: The plots exhibit a dynamical

response characteristic of a chaotic response. Additional peaks are formed in the PSD
around f =4 and f, Fig. 9(b), suggesting a narrowband chaotic behavior. Even though its level
has decreased, the fundamental is still dominant. This chaotic behavior is confirmed by the
complexity of the phase diagram, Fig. 9(c), and the Poincar!e map, Fig. 9(d). Contrary to
the previous cases, there is no dominant attractor. The window in which such complex behavior
exists is very small. Thus the beam response is very sensitive to the value of t�w and a small
variation in the wall shear stress leads to a totally different response, as shown in Fig. 10 obtained
for t�w ¼ 2:381:

ARTICLE IN PRESS

W. Buhler, A. Frendi / Journal of Sound and Vibration 270 (2004) 793–811 799



ARTICLE IN PRESS

time (s)

η*

2.95 2.96 2.97 2.98
-8

0

8

 η*

η* t

-7 7

-40

40

η*(i)

η*
(i
+
1
)

-5 0 5 10
-5

0

5

10

frequency (Hz)

W
* (
f)

×
1
0
4

0 500 1000 1500 2000
0

600

f

f/3

(a)

(b)

(c) (d)

Fig. 5. Non-linear response of the beam center for e� ¼ 0:201: (a) time history, (b) PSD, (c) phase diagram and

(d) Poincar!e map.
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The time history, Fig. 10(a), is periodic and shows three local maxima per cycle, in accordance
with the three loops of the phase diagram, Fig. 10(c), and the three points of the Poincar!e map,
Fig. 10(d). Instead of the f =4 subharmonic obtained in previous cases, we now have an f =3
subharmonic that is stronger than the fundamental.
Results obtained for e� ¼ 0:197 and for increasing values of wall shear stress are now presented.

Contrary to the case shown in Fig. 4 for e� ¼ 0:197 and t�w ¼ 0; the response is linear-like for small
shear stress values (t�wp0:136). The t�w ¼ 0:136 case is shown in Fig. 11, the time history,
Fig. 11(a), and the PSD, Fig. 11(b), indicate that the response is indeed linear-like and periodic.
This is confirmed by the phase diagram, Fig. 11(c), which is nearly circular, and the Poincar!e map,
Fig. 11(d), which reduces to a point. The wall shear stress has suppressed the subharmonics and
the harmonic. Therefore a low wall shear stress can be used to suppress non-linear vibrations.
As t�w is increased, more energy is added to the subharmonic, making the response more non-

linear. As shown on the PSD of Fig. 12 for t�w ¼ 0:340; the level of the subharmonic f =3 is higher
than that of the fundamental. The phase diagram, Fig. 12(c), is now showing three loops,
consistent with the three local maxima per cycle in the time history. Similarly, the Poincar!e map,
Fig. 12(d), shows three attractors. In this case, t�w increases the level of non-linearity of the beam
response.

4.3. Control of non-linear vibrations

Only one value of e� is considered throughout this subsection, e� ¼ 0:197: This excitation
amplitude resulted in a complex dynamical behavior when the wall shear stress was neglected.
Three control techniques are used. A widely used passive control technique consists of applying
damping tape at the edges of the beam. The consequence is an increase of Gt; the tape damping, to
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the beam damping. For this case, the value of Gt is increased and a sequence of solutions is
obtained. Another passive technique consists of using the effect of low wall shear stress on the
beam response (see Section 4.2). When control with a low t�w is considered, the non-linear
vibration (Eq. (1)) is solved for several low values of t�w: The last control technique is an active one
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and simulates a shaker vibrating at the center of the beam at the same frequency as that of the
excitation but with an opposite phase. For this case, solutions are obtained for different values of
shaker excitation amplitude e�s :
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Results obtained for the damping tape, low shear stress and shaker methods are very similar.
They show that, in all three cases, non-linear vibrations of the beam are reduced to linear-like
vibrations. Since suppression of non-linear vibrations should be achieved with a minimum
amount of energy, for each case the smallest value of the characteristic control term that
suppresses the non-linear behavior is considered. For the first case of control with damping tape,
suppression of non-linear vibrations is obtained for a minimum value of Gt ¼ 2:172� 102 kg s/m2.
When control is applied using low shear stress, t�w ¼ 0:136 is sufficient to suppress the non-linear
behavior. However, this control is limited in the range of t�w and as shown previously, when wall
shear stress is increased to 0.340 the response becomes more non-linear. For the case of control
with the shaker, a value of e�s ¼ 0:068 has to be reached in order to suppress the non-linear
behavior. Fig. 13 shows the comparison between the uncontrolled response of the beam and the
controlled response using the shaker method. The PSD, Fig. 13(b), shows that the f =3
subharmonic and the 5f =3 harmonic are suppressed when control is applied to the beam. The
phase diagram, Fig. 13(c), becomes also simpler since its shape is almost circular, whereas it had a
more complex shape before control. This is confirmed by the Poincar!e map, Fig. 13(d), which
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shows one point instead of the many points before control. The time history plot of the controlled
response, Fig. 13(a), shows a linear-like response. The value of the maximum transverse
displacement, although lower than the one of the uncontrolled responses, is still three times higher
than the beam thickness. Fig. 14 shows experimental results obtained by Maestrello et al. [6] for a
rectangular aluminum plate. Fig. 14(a) shows the power spectral density of the uncontrolled strain
response, which shows a broadband response. Fig. 14(b) shows the power spectra of the
controlled response for the case of a composite panel and that of an aluminum panel with
damping tape. Both spectra of Fig. 14(b) show linear-like response. Our numerical results, though
for a beam, are in good qualitative agreement with the experimental ones.

5. Conclusions

The non-linear structural vibrations of a beam subject to a harmonic excitation are studied and
the effect of fluid wall shear stress is investigated. Various excitation amplitudes are tested and
results show that in the non-linear vibration regime, energy is transferred from the fundamental to
the harmonics and then to the subharmonics, as the excitation amplitude increases. The results
show also the importance of wall shear stress in the non-linear model. For low excitation levels,
large values of wall shear stress are required to trigger the non-linear response, which is
characterized by an f =4 subharmonic bifurcation and a narrowband chaotic behavior. For high
excitation levels, non-linear behavior is at first reduced (for small values of wall shear stress) then
enhanced at high values of wall shear stress. Active and passive control techniques have been
tested on the non-linear response and resulted in the recovery of the linear beam response. Energy
is then transferred from the subharmonics and the harmonics back to the fundamental.

Acknowledgements

Support for this research was provided by the Office of Naval Research (ONR), under grant
N00014-01-1-0128, with Dr. Luise Couchman as a technical monitor.

References

[1] M.M. Bennouna, R.G. White, The effect of large vibration amplitudes on the dynamic strain response of a

clamped–clamped beam with consideration of fatigue life, Journal of Sound and Vibration 76 (2) (1984) 281–308.

[2] W.L. Starkey, S.H. Marco, Effects of complex stress time cycles on the fatigue properties of metals, Transactions

of the American Society of Mechanical Engineers 79 (1957) 1329–1339.

[3] C. Mei, C.B. Prasad, Effects of non-linear damping on random response of beams to acoustic loading, Journal of

Sound and Vibration 117 (2) (1987) 173–186.

[4] L. Maestrello, A. Frendi, Non-linear vibration and radiation from a panel with transition to chaos, American

Institute of Aeronautics and Astronautics Journal 30 (11) (1992) 2632–2638.

[5] A. Frendi, L. Maestrello, A. Bayliss, Coupling between plate vibration and acoustic radiation, Journal of Sound

and Vibration 177 (2) (1994) 207–226.

[6] L. Maestrello, A. Frendi, D.E. Brown, Non-linear vibration and radiation from a panel with transition to chaos,

American Institute of Aeronautics and Astronautics Journal 30 (11) (1992) 2632–2638.

ARTICLE IN PRESS

W. Buhler, A. Frendi / Journal of Sound and Vibration 270 (2004) 793–811810



[7] W.L. Keith, J.C. Bennett Jr., Low-frequency spectra of the wall shear stress and wall pressure in a turbulent

boundary layer, American Institute of Aeronautics and Astronautics Journal 29 (4) (1991) 526–530.

[8] D.M. Chase, A semi-empirical model for the wavevector-frequency spectrum of turbulent wall-shear stress,

Journal of Fluids and Structures 7 (8) (1993) 639–659.

[9] C. Hoff, P.J. Pahl, Development on an implicit method with numerical dissipation from a generalized single-step

algorithm for structural dynamics, Computer Methods in Applied Mechanics and Engineering 67 (2) (1988)

367–385.

[10] W. Buhler, Analysis and Suppression of Non-linear Beam Vibrations, Master Thesis, 2001.

[11] A. Frendi, Effect of wall shear stress on structural vibration, American Institute of Aeronautics and Astronautics

Journal 39 (4) (2001) 737–740.

[12] A. Frendi, L. Maestrello, A. Bayliss, Coupling between plate vibration and acoustic radiation, Journal of Sound

and Vibration 177 (2) (1994) 207–226.

ARTICLE IN PRESS

W. Buhler, A. Frendi / Journal of Sound and Vibration 270 (2004) 793–811 811


	Effect of fluid wall shear stress on non-linear beam vibration
	Introduction
	Formulation of the model
	Methods of solution
	Results and discussion
	Effects of N macr x* on the beam response
	Effect of the wall shear stress
	Control of non-linear vibrations

	Conclusions
	Acknowledgements
	References


